

New pentafluorothio (SF_5) -containing alkyl dibromides

Robin J. Terjeson, Robert Willenbring, Gary L. Gard *

Department of Chemistry, Portland State University, Portland, OR 97207, USA

Received 3 May 1995; accepted 23 July 1995

Abstract

Preparation of two new SF_5 -containing compounds and one telomer was achieved by reaction of the olefins CH_2 =CHBr and CF_2 =CFBr with SF_5Br to form $SF_5CH_2CHBr_2$ and $SF_5CF_2CFBr_2$. In the reaction of SF_5Br with CF_2 =CFBr, a waxy solid formed with an average formula of $SF_5(CF_2CFBr_1)_{10}Br$.

Keywords: Pentafluorothio group; Alkyl dibromides; Preparation; NMR spectroscopy; IR spectroscopy; Mass spectrometry

1. Introduction

Fluorinated alkyl bromides and dibromides with end groups such as $-CFBr_2$, -CFClBr and $-CF_2Br$ have been studied as telogens in reactions with fluoroolefins [1-4]. Pentafluorosulfur bromide, SF_5Br , has been shown to be a useful reagent for incorporating SF_5 — groups into carbon compounds by reaction with olefins [5-8] and should be effective in forming the corresponding dibromides by reaction with bromides. SF_5 polymers/telomers have been prepared by reactions of SF_5Cl with $CF_2=CF_2$ [9-11], $CF_3CF=CF_2$ with S_2F_{10} [12], $SF_5CF=CF_2$ with $CF_2=CF_2$ [13] and $CF_2=CH_2$ [14], and SF_5Br with $CF_2=CH_2$, $CF_2=CF_4$, $CF_2=CF_4$ and $CFH=CH_2$ [15].

2. Results and discussion

We have found that SF_5Br reacts readily with bromoethene $(CH_2=CHBr)$ at room temperature in a Pyrex glass vessel for 18 h, while more stringent conditions were needed to form the polymer/telomer with perfluorobromoethene $(CF_2=CFBr)$; in this case, a metal vessel containing the reactants under autogenous pressure was heated for 51 h at 76 °C. Under these conditions a waxy solid material formed in addition to the adduct $SF_5CF_2CFBr_2$. Dehydrobromination of $SF_5CH_2CHBr_2$ with KOH indicated the formation of $SF_5CH=CHBr$ and $SF_5C=CH$.

The infrared spectra of $SF_5CF_2CFBr_2$, $SF_5(CF_2CFBr)_{10}Br$ and $SF_5CH_2CHBr_2$ have been measured. All spectra exhibit strong SF_5 — stretching modes in the region 878–903 cm⁻¹.

The CF stretching frequencies between 1100 and 1208 cm⁻¹ are present in SF₅CF₂CFBr₂ and SF₅(CF₂CFBr)₁₀Br. The deformation modes for SF₅— appear at 603, 599 and 581 cm⁻¹ in SF₅CF₂CFBr₂, SF₅(CF₂CFBr)₁₀Br and SF₅CH₂CHBr₂, respectively. Cross and coworkers have reported the SF₅— stretching frequency as a strong band in the 850–920 cm⁻¹ region with a deformation mode near 600 cm⁻¹ [16]. The CH and CH₂ vibrations in SF₅CH₂CHBr₂ occur at 3034 and 2978 cm⁻¹.

The major mass spectral peaks for each compound are listed under Experimental details. For the adducts SF₅CF₂CFBr₂ and SF₅CH₂CHBr₂, the peaks are representative of the isotopic ratios of bromine. With both adducts, molecular ion peaks were observed. For the compound SF₅CH₂CHBr₂, the base peak was (127) FCH₂CHBr⁺, SF₅⁺, and for SF₅CF₂CFBr₂ it was (179) C₂F₄Br⁺.

The ¹H and ¹⁹F NMR spectral data for the compounds are listed in Table 1. The ¹⁹F NMR spectra for the adduct $SF_5CF_2CFBr_2$ showed an AB_4 pattern for the SF_5 grouping at δ 64.8 ppm (9-line) and 48.4 ppm (doublet). Interestingly, with $SF_5CH_2CHBr_2$, the axial fluorine splitting pattern reduced to a distorted pentet at δ 79.9 ppm with the doublet at δ 64.9 ppm. By comparison, $SF_5CF_2CF_2Br$ and $SF_5CH_2CH_2Br$ exhibited the AB_4 splitting pattern at δ 61.5 (9-line) and 44.3 ppm (doublet) [15], and at δ 80.8 ppm and 63.1 ppm [17], respectively. In $SF_5CF_2CFBr_2$, the CF_2 chemical shift occurred at δ – 86.1 ppm with the CF resonance occurred at δ – 78.5 ppm; for the polymer, these peaks consisted of broad multiplets over a range of chemical shifts.

The ¹H NMR assignments for $SF_5CH_2CHBr_2$ are δ 4.60 ppm for the CH_2 group and δ 5.95 ppm for the CH group. This is somewhat different from the compound SF_5CH_2 -

^{*} Corresponding author.

Table 1
Proton and fluorine-19 NMR data for new compounds

Compound	Chemical shifts (δ , in ppm from CFCl ₃ or TMS) *					
	a	b	С	d		
F ^a -SF ₄ ^b -CF ₂ ^c -CF ^d Br ₂ ratio	64.8 (9-line) 1.0 $J_{a,b} = 152 \text{ Hz}, J_{a,c} = 5.4$	48.4 (d) 4.1	-86.1 (s) 1.0	-78.5 (m) 2.0		
F^a – SF_4^b – $(CF_2^c$ – $CF^dBr)_{10}Br$	65.1 $J_{a,b} = 148 \text{ Hz}$	46.0	*	*		
F^a - SF_4^b - $C^aH_2^c$ - $C^\beta H^dBr_2$ ratio	79.9 (p,m) 1.0 $J_{a,b} = 147.3 \text{ Hz}, J_{b,c} = 6$	64.9 (d,m) 4.3 5.7 Hz, J _{c,d} = 6.0 Hz	4.60 (d,p) 2.1	5.95 (t) 1.0		

^{*} Broad peaks (integration ratio) occur at 58.2 (14); 71.0 (11); 82.5 (9); 86.2 (5); 93.0 (17); 100.9 (70); 106.2 (53); 129.5 (52); 137.5 (7) ppm.

Table 2

13C NMR spectral data (proton-decoupled) *

Compound	C_{α}	C_{β}	$J_{lpha, exttt{b}}$	$J_{oldsymbol{eta},b}$	$J_{oldsymbol{eta}, ext{c}}$	$J_{oldsymbol{eta}, ext{d}}$
$F^{a}-SF_{4}{}^{b}-C^{\alpha}H_{2}{}^{c}-C^{\beta}H_{2}{}^{d}Br^{**}$	71.3 (p)	23.15 (p)	13.90	6.36	_	_
F^{a} - SF_{4}^{b} - $C^{\alpha}H_{2}^{c}$ - $C^{\beta}H^{d}Br_{2}$	79.76 (d,p)	30.7 (br,p)	14.75	4.77	_	_
F^a - SF_4^b - $C^\alpha F_2^c$ - $C^\beta F^d Br_2$	121.8 (t,m)	85.7 (d,t)	_	_	34.5	327.6
F^a - SF_4^b - $C^\alpha HF^c$ - $C^\beta F_2^d Br^{***}$	108.15	114.87	23.3	_	30.2	$315.4 (F_d)$
	(d,d,d,p)	(d,d,d)				$307.8 (F_d)$
	(-/- /- /	\	$J_{\alpha,c}=249.0$	$J_{\alpha,c} = 249.0, J_{\alpha,d} = 36.0$		

^{*} Chemical shifts in ppm from TMS and coupling constants in Hz.

CH₂Br where the values are δ 3.93 and 3.60 ppm [17], with the δ 3.93 ppm resonance assigned to the protons closest to the SF₅ group. In SF₅CH₂CHFBr, the chemical shift of the protons in the CH₂ group was δ 4.27 ppm and in SF₅CH₂CF₂Br it was at δ 4.46 ppm; the CH hydrogen in the former compound had a chemical shift of δ 6.95 ppm [1]. With SF₅CHBrCHBr₂, the protons were at δ 6.29 and 5.86 ppm for CHBr and CHBr₂, respectively [18].

Table 2 lists the ¹³C NMR data for SF₅CH₂CHBr₂ and SF₅CF₂CFBr₂, as well as data for SF₅CH₂CH₂Br [17] and SF₅CFHCF₂Br [19] for comparison. Chemical shifts for the α carbon range from δ 71.3 ppm to δ 121.8 ppm, and for the β carbon from δ 23.15 to 114.87 ppm. These ranges are consistent with literature values reported for the sulfonic acids SF₅CH₂CH₂SO₃H, SF₅CH₂CF₂SO₃H, and SF₅CHFCF₂SO₃H [20]. In both groups of compounds there is a reversal of the α - and β -carbon pattern when the SF₅CHFCF₂ grouping appears; the chemical shifts differ by less than 10 ppm. Assignment of peaks was made by comparing the magnitude of the B₄ fluorine to carbon coupling constants with $J_{\alpha,b}$ ranging from 13.9 to 23.3 Hz and $J_{\beta,b}$ ranging from 4.77 to 6.36 Hz. Coupling of the axial fluorine to the carbons was not observed.

3. Experimental details

SF₅Br was prepared and handled as previously reported [1] or as modified in our laboratory. The reactants

CF₂=CFBr and CH₂=CHBr were purchased from Peninsular Chem. Research and used as received. Infrared spectra were obtained using a Nicolet 20 DX FT-IR spectrometer operating at 2.0 cm⁻¹ resolution or a Perkin-Elmer System 2000 FT-IR spectrometer operating at 1.0 cm⁻¹ resolution using KBr cells for liquids and solids. Mass spectra were measured on a VG 7070 HS mass spectrometer operated at 70 keV. NMR spectra were obtained on a Varian EM-390 spectrometer operating at 90.00 MHz for ¹H and 84.67 MHz for ¹⁹F or on a Bruker AMX-400 instrument operating at 100.6 MHz for ¹³C and 400.1 MHz for ¹H. Elemental analyses were determined by Beller Microanalytical Laboratory in Göttingen, Germany.

3.1. Preparation of $SF_5CF_2CFBr_2$ and the telomer $SF_5(CF_2CFBr)_{10}Br$

Into a 150 ml Hoke stainless-steel metal vessel equipped with a Whitey stainless-steel valve, 29.86 g (144.0 mmol) of SF₅Br and 20.46 g (127.0 mmol) CF₂=CFBr were condensed at -196 °C. The mixture was warmed to room temperature. The reaction vessel was placed in an oven at 76 °C for 51 h. The contents of the vessel were transferred to a 50 ml round-bottom flask and allowed to warm to room temperature. Distillation of the mixture gave SF₅CF₂CFBr₂ mixed with other minor components; 22.94 g and 48.8% yield based upon SF₅Br. The reaction vessel was rinsed with acetone and the rinsing set aside to dry. The solid material (3.82 g) col-

^{**} Ref. [13].

^{***} Ref. [14].

lected from these rinsings was the telomer with the average formula $SF_5(CF_2CFBr)_{10}Br$ calculated from the elemental analysis data. In a subsequent preparative run in a 2 l Pyrex glass vessel equipped with a Kontes Teflon valve, 5.80 g (28.0 mmol) SF_5Br and 4.93 g (30.6 mmol) of CF_2 =CFBr were condensed at -196 °C. The mixture was allowed to warm to room temperature and placed under a Sylvania 90-W Halogen Par 38 lamp for 19 h. Distillation of the mixture gave 6.63 g of $SF_5CF_2CFBr_2$ with a boiling point of 115–116 °C in 64.3% yield.

The infrared spectrum for $SF_5CF_2CFBr_2$ shows the following peaks (cm⁻¹): 1208 (s); 1118 (s); 1031 (w); 903 (vs); 886 (vs); 828 (m); 811 (w); 717 (s); 686 (m); 643 (w); 602 (s); 575 (w). The infrared spectrum for SF_5 -(CF_2CFBr)₁₀Br shows (cm⁻¹): 1411 (m); 1384 (m); 1249 (s); 1208 (vs); 1183 (vs); 1122 (vs); 1115 (m); 927 (s); 884 (vs); 841 (s); 796 (w); 763 (m); 712 (m); 683 (m); 653 (m); 636 (w); 599 (s); 573 (m); 532 (w); 495 (w).

A molecular ion peak and appropriate fragments were observed in the mass spectrum of $SF_5CF_2CFBr_2$. Major peaks include (m/z, mol, ion): 368 $(SF_5CF_2CFBr_2^+)$; 239, 241, 243 $(CF_2CFBr_2^+)$; 189, 191, 193 $(CFBr_2^+)$; 179, 181 $(C_2F_4Br^+)$; 160, 162 $(C_2F_3Br^+)$; 129, 131 (CF_2Br^+) ; 127 (SF_5^+) ; 110, 112 $(CFBr^+)$; 91, 93 (CBr^+) ; 89 (SF_3^+) ; 70 (SF_2^+) ; 50 (CF_2^+) .

Analysis: Calc. for SF₅CF₂CFBr₂: C, 6.52; S, 8.7; F, 41.3; Br, 43.37%. Found: C, 6.48; S, 8.59; F, 41.5; Br, 43.33%. Calc. for SF₅(CF₂CFBr)₁₀Br: C, 13.22; S, 1.77; F, 36.6; Br, 48.39%. Found: C, 13.56; S, 1.85; F, 37.1; Br, 47.53%.

3.2. Preparation of SF₅CH₂CHBr₂

Into a 31 Pyrex glass vessel equipped with a Kontes Teflon valve, 11.70 g (56.5 mmol) of SF_5Br and 6.55 g (61.2 mmol) of CH_2 =CHBr were condensed at -196 °C. The mixture was allowed to warm to room temperature overnight and the products transferred to a 25 ml distillation flask. Vacuum distillation gave 16.4 g for $SF_5CH_2CHBr_2$; b.p. 46 ± 2 °C/16 mmHg with a 92.4% yield based upon SF_5Br .

The infrared spectrum for SF₅CH₂CHBr₂ shows the following peaks (cm⁻¹): 2978 (w); 3034 (w); 1218 (m); 1177

(w); 1150 (m); 929 (s); 878-829 (vs); 720 (w); 595 (m); 581 (s); 565 (m).

A molecular ion peak and appropriate fragments were observed in the mass spectrum of $SF_5CH_2CHBr_2$. Major peaks include (m/z, mol, ion): 312, 314, 316 $(SF_5CH_2CHBr_2^+, ratio\ 1:2:1)$; 233, 235 $(SF_5CH_2CHBr^+)$; 185, 187, 189 $(CH_2CHBr_2^+)$; 127 (SF_5^+, FCH_2CHBr^+) ; 125 (FCH_2CHBr^+) ; 105, 107 $(C_2H_2Br^+)$; 106, 108 (CH_2CHBr^+) ; 89 (SF_3^+) ; 79, 81 (Br^+) ; 45 (SCH_2^+) ; 27 $(CHCH_2^+)$; 26 $(C_2H_2^+)$.

Analysis: Calc. for SF₅CH₂CHBr₂: C, 7.6; H, 0.96; Br, 50.90%. Found: C, 7.74; H, 0.97; Br, 50.97%.

References

- [1] A. Fontana, S. Modena, M. Tato and G. Moggi, J. Fluorine Chem., 29 (1985) 154.
- [2] M. Hauptschein, M. Braid and F.E. Lawlor, J. Chem. Soc., (1958)
- [3] P. Tarrant and M.R. Lilyquist, J. Chem. Soc., (1955) 3640.
- [4] P. Tarrant, A.M. Lovelace and M.R. Lilyquist, J. Chem. Soc., (1955) 2783
- [5] J. Steward, L. Kegley, H.F. White and G.L. Gard, J. Org. Chem., 34 (1969) 760.
- [6] A.D. Berry and W.B. Fox, J. Fluorine Chem., 6 (1975) 175.
- [7] A.D. Berry and W.B. Fox, J. Fluorine Chem., 7 (1976) 449.
- [8] Q.C. Mir, R. DeBuhr, C. Haug, H.F. White and G.L. Gard, J. Fluorine Chem., 16 (1980) 373.
- [9] H.L. Roberts, US Pat. 3 063 972, 1962.
- [10] H.L. Roberts, US Pat. 3 063 922, 1962.
- [11] H.L. Roberts, Can. Pat. 630 704, 1961.
- [12] J.W. Dale, US Pat. 3 126 366, 1964.
- [13] S. Sherratt, Br. Pat. 929 990, 1963.
- [14] R.E. Banks, M.G. Barlow, R.N. Haszeldine and W.D. Morton, J. Chem. Soc., Perkin Trans. 1, (1965) 1266.
- [15] R.J. Terjeson and G.L. Gard, J. Fluorine Chem., 35 (1987) 653.
- [16] H.L. Cross, G. Cushing and H.L. Roberts, Spectrochim. Acta, 17 (1961) 344.
- [17] C. Merrill, Ph.D. Thesis, University of Washington, Seattle, WA, 1962; NMR data taken from product prepared at Portland State University.
- [18] J.M. Canich, M.M. Ludwig, W.W. Paudler, G.L. Gard and J.M. Shreeve, Inorg. Chem., 24 (1985) 3668.
- [19] R. Winter, Ph.D. Thesis, Portland State University, Portland, OR, 1990.
- [20] R.J. Willenbring, J. Mohtasham, R. Winter and G.L. Gard, Can. J. Chem., 67 (1989) 2037.